Code: 20EC4601A

III B.Tech - II Semester - Regular Examinations - JUNE 2023

OPTICAL COMMUNICATIONS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

					Mov			
			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	Differentiate between step index and graded	L2	CO1	6 M			
		index fibers.						
	b)	A multimode step index fiber with a core	L3	CO1	8 M			
		diameter of 80µm and a relative refractive						
		index difference of 1.5% is operating at a						
		wavelength of 850nm. If the core refractive						
		index is 1.48, Calculate:						
		(i) 'V' number (or) normalized frequency						
		(ii) The number of guided modes.						
OR								
2	a)	Which three bands of wavelength are used	L1	CO1	6 M			
		for optical fiber communication? What is						
		Total internal reflection?						
	b)	Explain different causes of attenuation in	L2	CO1	8 M			
		optical fibers.						
		oparan norm.						

		UNIT-II			
3	a)	Explain the working principle of photo	L2	CO2	8 M
		diode and construction of reach through			
		Avalanche Photo Diode with a neat sketch.			
	b)	Illustrate the advantages of APD over pin	L3	CO2	6 M
		diodes.			
	I	OR			
4	a)	Describe a brief note on distributed	L2	CO2	6 M
		feedback LASER.			
	b)	Discuss the operating characteristics of	L2	CO2	8 M
		LED and LASER diodes.			
		UNIT-III			
5	a)	Discuss about Source coupling fiber optic	L2	CO3	7 M
		systems.			
	b)	What are fiber splices? Explain various fiber	L2	CO3	7 M
		splicing techniques.			
		OR			
6	a)	How fiber end preparation is done, explain?	L2	CO3	7 M
	b)	Discuss the concept of Wavelength	L2	CO3	7 M
		Division Multiplexing with a neat diagram.			
		UNIT-IV			
7	a)	Define the following: i) Thermal Noise	L1	CO4	7 M
		ii) Modal Noise iii) Shot Noise			
	b)	With the help of a circuit, explain how LED	L2	CO4	7 M
		Modulation is performed?			
	•	OR			

8	a)	What are the digital modulation formats	L1	CO4	7 M			
		used in Optical Communications?						
	b)	Explain the working of Optical Herterodyne	L2	CO4	7 M			
		receiver.						
	UNIT-V							
9	a)	Explain the Fiber optic analog System	L2	CO5	7 M			
		design.						
	b)	Illustrate briefly about any two applications	L3	CO5	7 M			
		of Fiber optics.						
	OR							
10	a)	How Fiberless transmission is carried out?	L2	CO5	7 M			
		Explain.						
	b)	What are the parameters considered	L1	CO5	7 M			
		commonly for analog/digital system design?						